
Music Sequencing with Dynamic Transposition

TECTRAL∗

November 9, 2025

Music Sequencing with Dynamic Transposition
Summary
The purpose of this software is to read music scores in Dynamic Transposition no-
tation (PDF) and convert them into WAV files. This simplifies music sequencing
and uses a more harmonious musical scale.

Contents
• Method
• Implementation
• Files
• Usage
• References

Method
In just intonation scale frequencies of musical tones are given by rational fractions
of the base frequency. For example, if the base frequency of note A in 4-th octave
is freq(A4)=440Hz then frequencies of related harmonic intervals, corresponding
to C#5 and E5 in octave 5 will be: 5/4*440=550 and 3/2*440=660 respectively.

Corresponding minor chord frequencies will be: 440 (A4), 440*6/5=528 (C5),
and 660 (E5). Thus, the frequencies for A4, C5, C#5, E5 are:

440 A4
528 C5
550 C#5
660 E5

∗Tectral.

1

https://tectral.com/dtm/man/dtn.html
https://tectral.com/dtm/man/dtn.html
https://tectral.com/pub/dtn.pdf
https://en.wikipedia.org/wiki/WAV
https://en.wikipedia.org/wiki/Just_intonation
https://en.wikipedia.org/wiki/Just_intonation
https://tectral.com


This is in contrast to the standard Chromatic scale where the corresponding
frequencies are approximately:

440.00 A4
523.25 C5
554.37 C#5
659.26 E5

From this comparison it is clear that the scale based on rational fractions
produces musical intervals with better resonating frequencies. This makes music
more harmonious when plaid in such scale. We will refer to the scale based on
rational fractions (i.e. fractions of integers) as rational scale.

Acoustic instruments can be tuned in rational scale but then they can only
play in one octave, i.e. in a single key. Going to a different octave will change
the intervals, so the same chords will sound differently. This is the reason why
rational scale is not commonly used.

That’s where the method of dynamic transposition comes to the rescue. This
technique makes it possible to play in rational scale in different keys and different
octaves using computer generated tones. All one needs to do to switch from one
key to another is to shift the frequency of all notes by a corresponding rational
fraction. For example, the frequencies of the major chord above in key A and
then in key D will be:

Key A: 440, 550, 660
Key D: 6/5*440, 6/5*550, 6/5*660

To play in key D we multiplied all three frequencies of key A by 6/5 which
corresponds to the frequency shift from A4 to D5. This is akin to transposition
which can be used on electronic instruments. Here transposition is done on-the-
fly, switching from one key to another while playing the composition, thus the
name dynamic. Also, the shift in frequency is done by rational numbers which
produces more harmonious intervals than in conventional Chromatic scale.

Implementation
A music score in rational scale for several instruments can be written in a simple
text file. Two notations can be used: explicit and implicit. Explicit format uses
numbers and implicit - letters. For example, explicit format will look like this:

5:3 1:1:2 5:4:2 3:2:2

which instructs three instruments to play a chord of three notes at frequencies:

instrument 1 (1:1:1) plays at frequency: base_freq*(5/3)*(1/1*2^2)
instrument 2 (5:4:2) plays at frequency: base_freq*(5/3)*(5/4*2^2)
instrument 3 (3:2:2) plays at frequency: base_freq*(5/3)*(3/2*2^2)

2

https://en.wikipedia.org/wiki/Chromatic_scale


where “base_freq” is the base frequency which is the same for the whole
composition and is selected at the beginning (e.g. 440Hz).
The fraction given at the beginning of each row (5:3 in our example) is used to
multiply the base frequency of the composition and make it base frequency of
that row. In this example:

base_freq_row = base_freq * 5/4

Essentially the base frequency was transposed to become the frequency of that
row and all notes on that row will use it to set their frequencies. Thus, the
fraction in the first column determines dynamic transposition since it changes
the base frequency on-the-fly during the composition.

All other numbers in the row determine frequencies of the notes plaid by respective
instruments. Notation “a:b:c” defines the factor that the base frequency of the
row is multiplied by, that is

note_freq = base_freq_row * a/b * 2^c

where

a is the numerator,
b - the denominator, and
c - the octave (notation 2^c means raising 2 to power c).

We can also substitute letters for fractions for convenience. For example, that
line can also be written in implicit format as

A C2 E2 G2

where number 2 on the right of each letter represents the octave and the fractions
are assigned to letters as:

A=5:3
C=1:1
E=5:4
G=3:2

The letters can be arbitrary, but in this case we chose them to correspond to
key C. So, the above line (A C2 E2 G2) corresponds to chord C-E-G transposed
to key A, which will result in chord A2-C#3-E3 actually plaid. This way one can
play all keys using only the notes in key C which is another advantage of this
method.

For example, if we want to repeat the sequence of main triad notes in four
different keys: C, Am, F, G (i.e. three major and one minor - Am) we can do it
as this:

C C2 E2 G2
A C2 Eb2 G2
F C2 E2 G2
G C2 E2 G2

3



where the first letter in each row corresponds to the frequency shift for the entire
row (i.e. the key plaid). Note that we did not need to change the notes C,E,G
for any of major keys, and only introduced Eb=6/5 (i.e. E-flat) for a minor key
Am. The resulting sequence is much simpler than it would be in a conventional
music score.

The complete composition may look like this:

; Definitions:
Am = 5:6
C = 1:1
E = 5:4
Eb = 6:5
G = 3:2
; Score:
C C2 E2 G2
Am C2 Eb2 G2
F C2 E2 G2
G C2 E2 G2

Thid will play chords in keys: C, Am, F, and G. Note that fraction 5:6 was
labeled as Am to signify that this is a minor chord. This was done mainly for
clarity and would work with any other label. The semicolon (;) is used for
comments.

Time duration for each row is referred to as tick and is set at the beginning of
the score file which is called preamble. Each tick can be further subdivided into
smaller time intervals referred to as pics. The number of picks in a tick is also
defined in the preamble.

Several ticks comprise a beat, and several beats comprise a measure where
corresponding numbers (i.e. ticks-per-beat and beats-pre-measure) are also set in
the preamble. These parameters are used when one wants to output only specific
measures from a composition. This can be done by supplying clip parameters for
the DT compiler (run DT compiler with –help option to see more information).

To make note duration longer than one tick one should put ‘+’ in the next line
corresponding to the position of respective instrument. For example, in this
chord:

A B2 C2 D2
A + - -

instrument 1 plays note B2 for the duration of two ticks (two consequtive lines)
and the rest of instruments play respective notes (C2,D2) for one tick only. The
dash symbol ‘-’ is used to indicate pause for respective instrument.

To make notes with a duration less than one tick (i.e. several picks) one can use
this notation:

A - C2,2

4



A B2.1 D2

In this case note B2.1 starts one pick before the tick corresponding to the
line where this note is located and note C2,2 starts two picks before the tick
corresponding to the next line (i.e. before D2).

There are also special lines to set the volume (amplitude) and panning for each
note. These lines begin with special tags: amp for amplitude and pan for pan.
Sample score files supplied with this package provide examples of their usage.
In the examples file-extention dtt is used for explicit and dtm for implicit file
formats.

The source codes included in this package are written in GO language. They
produce the DT-executable that compiles dtm or dtt files into MIDI or SCound
SCO files. The supplimentary Unix shell scripts are used to run the DT-compier
and convert the MIDI/SCO file to WAV or MP3 file.

Files
• On Tectral
• On GitLab

The files in this package include the source files and build scripts for dynamic
transposition (DT) compiler as well as examples of score files and compiled
compositions.

• Build files
– src/Makefile - Unix make file to build the DT compiler executable

named dtc that compiles dynamic transposition score into MIDI file
or CSound score file.

– src/make_sco.sh - Unix script that compiles dynamic transposition
file (dtm-file) into CSound score file and calls CSound engine to
convert it to a WAV file using CSoud orchestra file.

– src/make_midi.sh - Unix script that converts dynamic transposition
score file (dtm-file) into MIDI file and calls fluidsynth to convert the
MIDI file to WAV file, or play it using system soundfonts.

– src/make_drums.sh - Unix script that converts dynamic transposi-
tion score file (dtm-file) into MIDI file with percussion track and calls
fluidsynth to convert MIDI file to WAV file, or play it using system
soundfonts.

• Source files of DT compiler
– src/def.go - declarations of global variables and some common

functions.
– src/compile.go - main function and routines to write output.
– src/score.go - functions and data structures to read the dtm file

and create a sequence of notes in rational scale.
– src/frac.go - structures and functions to manipulate fractions.

5

https://go.dev/
https://en.wikipedia.org/wiki/Bash_(Unix_shell)
https://tectral.com/dtm/src
https://gitlab.com/andrei.v.smirnov/dtm


• Documentation
– man/dtc.md - Introduction to Dynamic Transposition Method (this

file)
– man/dtc.pdf - Introduction to Dynamic Transposition Method
– man/dtm.pdf - Paper on Dynamic Transposisition Method
– man/dtn.md - Introduction to Dynamic Transposition Notation
– man/dtn.pdf - Introduction to Dynamic Transposition Sequencer

Notation
– man/dtn.mp4 - Introductory Video to Dynamic Transposition Nota-

tion
• Score Samples

– man/canon.dtm - dynamic transposition score of Pachelbel’s Canon
in D written with letters and rendered with soundfonts.

– man/canon.dtt - dynamic transposition score of Pachelbel’s Canon
in D written with fractions and rendered with soundfonts.

– man/canon.mp3 - MP3 file produced by compiling cannon.dtm file
with DT compiler.

– man/drums.dtt - example of using drum track in DT score wiht
soundfonts.

– man/drums.mp3 - MP3 file produced by compiling drums.dtt file with
DT compiler.

– man/avemaria.dtm - dynamic transposition score of Ave Maria song
written with letters and rendered with CSound.

– man/avemaria.orc - CSound orchestra file.
– man/avemaria-head.sco - header for CSound score file.
– man/avemaria.mp3 - MP3 file produced by compiling avemaria.dtm

file with DT compiler.

Usage
Building DT compiler

• Install go language compiler.
• To compile dtc executable on Linux change to src directory and run make

command.

Editing DTM/DTT files

To edit DTM/DTT files on Linux you can use vim editor with syntax highlighting
set to asn68k. In the score part use tabs instad of spaces to separate columns
for respective instruments (see manual in man directory).

6



Using DT compiler

The DT compiler executable by itself converts dynamic transposition scores into
MIDI or SCound files. To produce actual audio files, such as WAV or MP3 one
can use different tools, such as Fluidsynth, or FFmpeg on Linux. To simplify
this we provide two Bash scripts: make_midi.sh to create a MIDI file and then
produce a WAV file with fluidsynth and make_sco.sh to create a CSound
score file and then compile it into a WAV file with CSound.

Examples below show how to compile dynamic transposition formats, DTM
(using letters) or DTT (using numbers) into WAV or MP3 files using MIDI or
CSound isntruments on Linux.

Compiling to MIDI To compile a DTM or DTT file to MIDI file a GoMIDI
go-library is used by the DT compiler. The produced MIDI file can then be
converted to WAV file with FluidSynth on Linux. The make_midi.sh script
provided in this package will run the DT compiler and convert MIDI to WAV.
For example this command

sh make_midi.sh canon.dtm

will convert canon.dtm file into canon.mid file and then call fluidsynth to produce
canon.wav file. One can also play the MIDI file directly with fluidsynth.

To include tracks with percussion instruments into MIDI file one can use use
example drums.dtt provided in this package which can be compiled with
make_drums.sh script as:

sh make_drums.sh drums.dtt

which will produce the drums.mid file and convert it to drums.wav by calling
fluidsynth engine.

To convert WAV file to MP3 on Linux one can use the FFmpeg utility.

Compiling to CSound To compile a DTM or DTT file to CSound sco-file one
can use make_sco.sh file provided with this package. For example, to compile
the Ave Maria example score one can use this command:

sh make_sco.sh avamaria.dtm

This will produce a CSound score file avemaria.sco and then call csound engine
to convert it to avemaria.wav file using CSound orchestra file avemaria.orc
and a header file avemaria-head.sco file which are included in this package.

Compilation options Sometimes it can be useful to compile only certain
measures from the score. For that one can use special compiler options. For
example, to compile a midi file with two measures starting with the third measure,
one can invoke the compiler with this command:

dtc -m 3 -n 2 score.dtm output.mid

7

https://www.fluidsynth.org/
https://www.ffmpeg.org/
https://www.gnu.org/software/bash/
https://en.wikipedia.org/wiki/MIDI
https://csound.com/
https://en.wikipedia.org/wiki/MIDI
https://github.com/gomidi
https://en.wikipedia.org/wiki/WAV
https://www.fluidsynth.org/
https://www.fluidsynth.org/
https://www.ffmpeg.org/
https://csound.com/


or the respective Bash script as:

sh make_midi.sh score.dtm 3 2

If the first measure starts after a few introductory beats which one wants to skip
one can indicate this with the -s option, like this:

sh make_midi.sh score.dtm 3 2 1

This will skip one introductory beat. That is, measures will be counted from the
second beat in the compisition.

References
• Dynamic Transposition Method: homepage (tectral.com/dtm, PDF).
• Dynamic Transposition Method: paper on Dynamic Transposition method

(tectral.com/pub/dtm.pdf).
• Dynamic Transposition Sequencer Notation (PDF, MP4): Introduction to

Dynamic Transposition sequencer notation (tectral.com/pub/dtn.pdf).
• DTM on GitLab.
• GO compiler for compiling DT source codes.
• GoMIDI: Go libraries for MIDI (github.com/gomidi).
• CSound for coverting CSound SCO files into WAV files.
• FluidSynth for converting MIDI files into WAV files.
• FFmpeg utility for converting from WAV to MP3 files.
• Unix shell scripts for executing DT compiler, CSound, and FluidSynth.

8

https://tectral.com/dtm/index.html
https://tectral.com/dtm/man/dtc.pdf
https://tectral.com/dtm/man/dtm.pdf
https://tectral.com/dtm/man/dtn.html
https://tectral.com/dtm/man/dtn.pdf
https://tectral.com/dtm/man/dtn.mp4
https://gitlab.com/andrei.v.smirnov/dtm
https://go.dev/
https://github.com/gomidi
https://csound.com/
https://www.fluidsynth.org/
https://www.ffmpeg.org/
https://en.wikipedia.org/wiki/Bash_(Unix_shell)

	Music Sequencing with Dynamic Transposition
	Summary
	Contents
	Method
	Implementation
	Files
	Usage
	Building DT compiler
	Editing DTM/DTT files
	Using DT compiler

	References


